
Phase transition in a nematic n-vector model: the large-n limit

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 6155

(http://iopscience.iop.org/0305-4470/25/22/036)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 25 (1992) 6155-6162. Rinted in the UK 

ADDENDUM 

Phase transition in a nematic n-vector model: the large-n limit 
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Ecublens, CH-IO15 Lausanne, Switzerland 
$ Max-Planck lnstitut f i r  FestkBrperforschung, Heisenbergstrasse 1, D-70CfJ Stuttgart 80, 
Federal Republic of Germany 

Received 18 February 1992 

Abstrad. The free energy of the RP".' model is rigorously computed in the n = m limit. 
The system shows a first-order transition with latent heat, in two and three dimensions. 
The first correction in I / n  is also computed. Comparison of the results with numerical 
ones shows that whereas in three dimensions the larpe-n limit wrrenly reproduces the 
behaviour of the system for n 2 3, it does not in two dimensions for Some observables. 

1. Introduction 

Recently we have solved the RP"-' model in the n = 00 limit [l]. We found a first-order 
transition with latent heat in two and three dimensions. The result has been rederived 
by a different technique in 121. The surprising nature of the results in two dimensions 
prompted us to see if it was an artifact of the n = CC limit, and if indeed such a phase 
transition would be present for finite but large n. The results of a numerical study were 
puzzling [3]. Whereas the value of the critical temperature was correctly reproduced, 
the detailed nature ofthe transition was not. By contrast: in three dimensions a genuine 
first-order transition occurred which can be reasonably described by the n = 0O limit 
for any n 5 3 [ 11. 

These findings motivated us to rederive our previous results in a more rigorous 
way. By this we mean that we wanted to prove that under some conditions the n = 0O 

and the thermodynamic limit can be exchanged. This is what we have succeeded in 
doing for the free energy. This result explains why the critical temperature is correctly 
reproduced in the n = m limit, but leaves open the possibility that the nature of the 
singularity at T, is not. This is what is happening in two dimensions but not in three 
dimensions. In order to detect some instability of the result, induced by the first 
correction in I / n ,  we have computed it for the free energy. No apparent instability 
was found in two dimensions. We think that these results show the subtlety and the 
importance of the question of the permutability of the n = m and the thermodynamic 
limit. 

8 Work supported by the Fonds National Suisie de la Recherche Scientifique. 
11 Resent address: Department of Physics, Harvard University, Cambridge, M A  02138, USA. 
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2. Bounds lor the lree energy and the limit n =oo 

Here we want to derive useful upper and lower bounds on the free energy of the model. 
They will be given in terms of the free energy of the Heisenberg model and appear 
useful for computing the free energy when the number of components n tends to infinity. 

The volume will be taken to be a cube of size L and we will use periodic boundary 
conditions. First of all we express the partition function in terms of the partition 
function of an annealed Heisenberg model by means of the identity 
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where Z({nA,(x)]) is the partition function of a Heisenberg model, with 
inhomogeneous coupling constants A,(x) 

Z({A,(x)}) = j do(g)  exp[ 2 A&)(+), d x + p ) ) ] .  (2.2) 
P X  

The upper bound we are looking for will be given, essentially, by the maximum of the 
integrand in (2.1) which, as we will see, is reached when all the coupling A,(x) are 
the same. 

We will prove that 

where Z(A) is the partition function when all the coupling constants are equal to A. 
This bound might prove to be useful in the context of spin glasses. 

From (2.3) we immediately get, for any p'> p 

where 

1 1 
+-lnZ(nA) . 

(2.4) 

Let us now come to the proof of (2.3). First of all, we note that we can take all 
the A,(x) positive since 

Z({A,,(x)l) < z ( { l ~ , ( x ) ~ l ) .  (2 .6)  

This can be seen easily by expanding the exponential in (2.2) and noting that all the 
coefficients of the {A,,(x)} are positive. 

The proof will be based on the following inequality 141: 

valid as long as, for example, all powers of KT; are trace class. 
The T. in the following will be various transfer operators. 
We begin by constructing transfer operators in the direction 1. Let Ai be the 

multiplication operator by 
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x and p now being vectors in Z d - l .  The operator B, is defined by the kernel 
r 1 

This operator is compact, self-adjoint, and positive definite, on the space L2(SfLi’). 
The partition function can be written as 

z({A+(X)}) =tr(A,B,A2B2.. . (2.10) 

if we choose L = 2M. 
We can then define the operators 

T2j-I = J7i; JB; j = 1,. . . , 2 M  
(2.11) 

T 2 j = J B ; G  A ~ M + I - A I  
and we see that 

Z({AW(x)})=tr(TiT2.. . T ~ M ) .  (2.12) 

Using (2.7) we conclude that 

Z({A,(x)})< n [ tr (~Bj~)2M]1’4M[tr(JB;Aj+IJB;)2M11’4M (2.13) 
2 M  

j = ,  

Similarly 

+ + # I  1 ~,( j+1Y)(4XIY).  ~ ( X ~ Y + P ) ) ] .  
X I Y  

In equality (2.13) can therefore be expressed as 

(2.14) 

(2.15) 

(2.16) 

L 

Z({A,(x)])S n Z({A,(i,. . . ) , A p ( i l + u l . .  . ) w #  1] )”2L.  (2.17) 
it=, 

0,-0.1 

Repeating the process in all the other directions, we get 

i 
Z({A,(x)})S . .  n Z({A,(i,i2+u2, i l+u l . .  . ) , A 2 ( i , + u , ,  i2, i l+rl) . . .})”2dLd. 

ll...ld 

0, ... Cd 

(2.18) 
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However, in the right-hand side of this inequality there appears the partition function 
of the model with all couplings homogeneous in each direction, hut different in these 
directions. We will prove the bound 
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(2.19) 

This bound combined with (2.18) immediately gives the announced bound (2.3). In 
order to prove (2.19) we will use transfer operators along the diapona!. For simplicity 
of notation, we discuss the two-dimensional case. As discussed in Baxter [SI, we can 
introduce a transfer operator by defining two operators 

vA,,A,(uld=eXP[A, “ = I  1 ( d n ) ,  u’(n))+A2 n = ,  1 (U(n) , ‘J’(n-l))  (2.20) 1 L L 

nnrl ...... 

so that 

W::J,= VAS:,: (2.22) 

and the partition function can be written as 

 AI, A ~ ) = ~ ~ ( V A , , A ~ W A , , A J  . (2.23) M 

In equality (2.7) therefore gives 

(2.24) z(A,,A2)S[tr(V,,.,,VT,,,n,) 1 [ ~ ~ W A ~ , ~ ~ W ~ , , ~ ~ )  1 . 

From (2.22) VA,,A,VxL,,,= V, , , , ,  W,,,,,. This transfer operator describes a model with 
alternating coupling constants along the directions perpendicular to those considered. 
Thus, if we now introduce a transfer operator along the perpendicular diagonal we get 

M 1/2 M 112 

t ~ ( ~ , ~ , ~ 2 ~ ~ , , A ~ ) M  = t~(v,L,ALwA2,AY’. (2.25) 

and appiying again inequaiity (2.7) we conciude, using (2.223, that 
M 1/2 M 112 

t r (VA, ,A~V~, .~ * )M~[ t r (VA, .A ,WA~, , , )  1 [ t r (W,2 ,A2VAd 1 . (2.26) 

Combining (2.24) and (2.26) we conclude that 

Z ( A l ,  A,) S Z(A,, A,)”’Z(A2,  A2)”2. (2.27) 

In more than two dimensions, we can derive the corresponding inequality by introduc- 
ing diagonal transfer operators in  all the various planes (12), (23), (31), . . . . 

In order to obtain a lower bound on the partition function, we simply translate 
A,(x) by A in expression (2.1). 

In this way we get 

(2.28) 
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where the expectation value in the integrand is with respect to the Heisenberg model 
with coupling constant n A. Jensen’s inequality gives 

and we get the lower bound 

1 1 
nN [6‘p nN 
-In(?> --A2+-InZ(nA) 

Finally, making the optimal choice for A, we get 

In conclusion we have proven that 

valid for any p’> p, where we recall that 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

wheref+(A)= ( l / n N )  In Z(nA) is the free energy of the Heisenberg model. 

Indeed, since for those A giving a maximum to the expression in (2.33), we have 
These bounds are optimal when n +m, after or before the thermodynamic limit. 

_- d A - ~ . N ( ~ )  = K O ( ~ ) ,  + ) ) ) S  1 
2P 

therefore 

(2.34) 

Hence the supremum in (2.33) has to be taken on the compact interval given by (2.34). 
We can prove that the convergence to the spherical model of the free energy of the 
Heisenberg model is uniform both in N and n. Unfortunately the proof by Kac and 
Thompson [4] of this result is incorrect although the final result is of course correct. 
A correct proof has been given by Shcherbina [SI. Hence we can replace the expression 
forf&(A) appearing in (2.33) by its thermodynamic limit, and this limit when n tends 
to infinity. And since g(p)-,- is continuous in p, we obtain the final result 

1 1 
p p = l i m  l i m - l n Q = l i m  lim-InQ 

n-m N-m nN N-m n-m nN 

with 

with the well known result forfm(A): 

(2.35) 

(2.36) 

(2.37) 

In this way we have given a rigorous justification for the results obtained in [l]. 
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An analysis [ I ]  of the equations (2.36) and (2137) shows that the model has a 

The following result is a theorem: let f.(P) be a sequence of convex functions, 
first-order transition, in any dimension d 3 2 when n = m. 

which have a limit f ( p ) .  Then 

for all values of 8 at which f ( p )  is differentiable. If we apply this theorem to the free 
energy of the RP"-' model, we can conclude that the internal energy of the RP"-' 
model approaches, when n tends to infinity, that computed from equations (2.36) and 
(2.37), except possibly at pc, the inverse critical temperature found in the limit n = m. 
From our result we can therefore conclude that near p. the internal energy of the 
RP"-' should vary very suddenly when n is large, but it leaves open the possibility 
either that there is no true phase transition or that, if it exists, it is not first-order. 

3. First order in a l l n  expansion for the free energ) 

We can now proceed to an expansion in the parameter 1 f n. In the expression for the 
partition function 

we are justified in developing around a uniform saddle point. We therefore define 
1 

A,(x)=A+-AA,(x) Jii 
so that 

where 
Q=!+mdAexp[-LC A : ( x ) - - C  Jii A,(x)A] 

-m 4 8  =* 2P XI .  

(3.2) 

(3.3) 

(3.4) 

and Q,(nA) is the partition function of the usual Heisenberg model with inverse 
temperature nA. (. . .),, refers to an average with respect to this model. Although it 
may not look obvious, we have not violated gauge invariance by choosing the saddle 
point (3.2). Indeed, all the saddle points 

with ex =*I, obtained by letting the gauge group Z2 act on the uniform saddle point, 
would give the same result. This can be seen by noting that 

{A%%+*} (3.5) 
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where in 0. we develop around the saddle point (3.5). Using gauge invariance we can 
stay with equation (3.2). 

We can now develop in cumulants the average of the exponential appearing in 
equation (3.41, and we get to second order: 

"Y 

where 

e,(x) = (+), ~ x + P ) )  (3.8) 

is the local energy in the direction p for the Heisenberg model and the matrix C is 
defined by 

(3.9) 
1 

C,Aw) =- 6,,&,y - n[((e,(~)e,(y))~-(e,(x)),(e,(y))~)l .  
2P 

The saddle-point equation is now 

and we get, for the free energy in the thermodynamic limit, 

nA2d 
dk tr In E ( k )  -- 

2 4P 

(3.10) 

(3.11) 

(3.12) 

What remains to do is to compute the free energy of the Heisenberg model to first 
order in I / n  and the correlation function 

n[(e,(x)e,(y))-(e,(x))(e,(y))I = n(e , (x) ;  e h ) )  (3.13) 

in the limit n = 00. 

The equation for the saddle point will be given by 

The free energy to order l / n  has been calculated with the result 161: 

dkln G(k)-f dklnII(k)  
2 2  I 

where 

G(k)  = (++a)-' 

(3.14) 

(3.15) 

(3.16) 
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with 
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c k = 2 A ~ c o s k ,  c3.17) 
F 

(3.18) 

The parameter (I is determined by the stationarity of /3pH with respect to it, i.e. by the 
equation 

(3.19) 

This condition also means that the constraint ( d ) = l  is satisfied to order l / n .  We 
have also computed &,,"(k), After some lengthy computation, one finds 

where 

n,(k) = dp  G ( p ) G ( p +  k )  exp[i(p, e,)] (3.21) .I 
e+ being the x i :  *;ec:=: in :'.e di:ectio:: i;. Fq-a?im :3.:2:, (?.!$, :3.:9: aiid :3.20: 
allow us, in principle, to compute the free energy given in equation (3.11). This set of 
equations is rather complicated to analyse in a quantitative way since it is difficult to 
get closed form expressions for the quantities n ( k )  and II,,(k), for example. 

We can, however, draw the following qualitative conclusions. We have different 
solutions for the saddle point equation (3.10) besides the trivial one, A = 0. If we take 
the solution A' which coincides in the linlit n = 00 with the one AA which minimizes 
the free energy when p 3 p., we will get A'= Ab+A:/n. We will therefore apparently 
add a smooth contribution to the free energy obtained in the limit n =m. This quantity 
possesses a Aump in its derivative which the I / n  contribution cannot suppress unless 
the matrix C ( k )  possesses an eigenvalue which vanishes at the critical point P,(m), 
which would indicate an instability of the l / n  expansion. The numerical results indicate 
that in three dimensions, no stability of chis kind occurs and the transition remains 
first order, even when I / n  corrections are taken into account. But in two dimensions 
where the Heisenberg model itself shows no transition when n is large, the numerical 
results indicate an instability in the l / n  expansion. In order to see if this is really the 
case a more detailed analysis, probably numerical, of the l / n  corrections is needed. 
We have left this for further study. 
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